Physiologically Based Pharmacokinetic (PBPK) Modelling in Vulnerable Populations

PBPK in young children: the importance of ontogeny

March 14th, 2019 Jean Dinh PharmD, PhD

© The Children's Mercy Hospital, 2017

Disclosures

Consultant for ReveraGen BioPharma

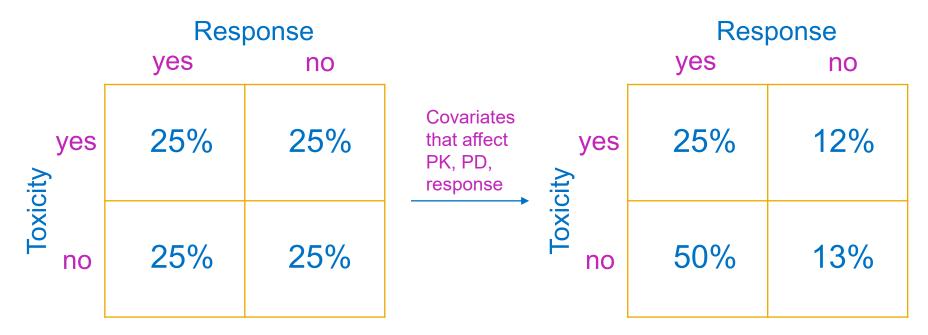
Highlights

• <u>Target population</u>: children

- Specific population issues prime for PBPK as a tool: ontogeny
- <u>Why PBPK may out-perform other pharmacometric tools</u>:
 - Minimize ethical and technical concerns with conducting intense pharmacokinetic studies in children, particularly young children.
 - Incorporation of ontogeny functions.
 - Can adjust physiological parameters to model specific pediatric population of interest.

Precision Medicine

Precision Diagnosis


- Understanding mechanism of pathophysiology
- Determine the biological processes that are dysregulated
- Biomarkers of disease
 progression

Precision Therapeutics

- Determine the "right"
 medication
- Determine the "right" dose
- Anticipate efficacy and possible adverse events

Precision Therapeutics: Making better decisions for the child, based on the child's data

Population Informed Dosing

Individual Informed Dosing

Precision Therapeutics Strategy: Stratification with Biomarkers

Demographic Information

- Age (<u>Ontogeny!</u>)
- Weight
- Gender
- Ethnicity

High-Throughput Information

- Genomics
- Transcriptomics
- Proteomics
- Metabolomics

Ontogeny Definition

<u>Ontogeny</u>

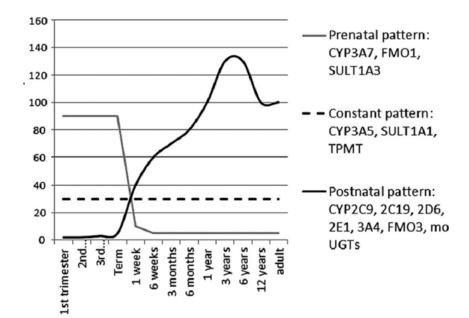
The development, or course of development, of an individual organism

The development of individual to maturity: the development of an individual from a fertilized ovum to maturity

- Age in the case is a (crude) biomarker of complex biological processes.
 - Biomarker that correlates with activity/function of biological process that is critical to drug PBPK.

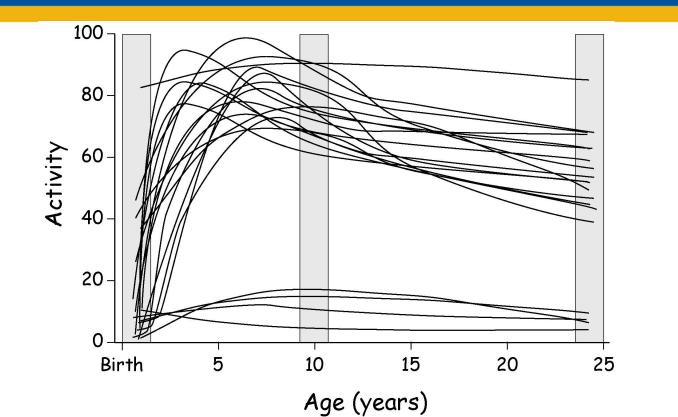
Considerations when studying/modelling a pediatric population

Clinical studies to characterize PK


- Ethics (particularly young children)
- Highly heterogenous, increased noise (age range represents large change in physiological process of interest)
 - NICHD age group recommendation: term neonatal (Birth – 27 days); infancy (28 days – 12 months); toddler (13 months – 2 years); early childhood (2-5 years); middle childhood (6-11 years); early adolescence (12-18 years); late adolescence (19-21 years)

Modeling to anticipate PK

- Typically scaled down from adult
- Assumption:
 - Disease presentation, clinical targets, drug pharmacokinetics and pharmacodynamics are similar between adults and children.


The Role of Ontogeny → Metabolism, Clearance, and PBPK

- Functional drug biotransformation capacity is acquired in gene-specific patterns ("developmental trajectories")
 - Group 1: Primarily fetal expression (CYP3A7; SULT1E1)
 - Group 2: SULT1A1, CYP2C19, CYP3A5, GSTA1
 - Group 3: CYP1A2, CYP2C9, CYP2D6, CYP3A4, UGTs
 - Observed variability greatest in first 3 months of life

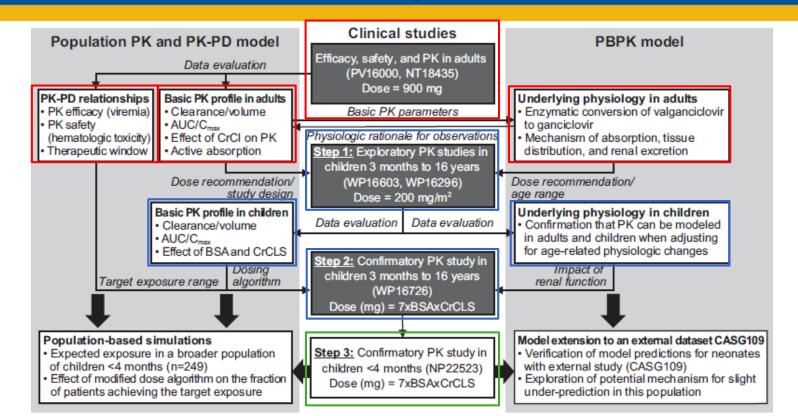
Variability in Group 3 Trajectories

Courtesy of JS Leeder

10

Caveats when Scaling Adult Models for Children

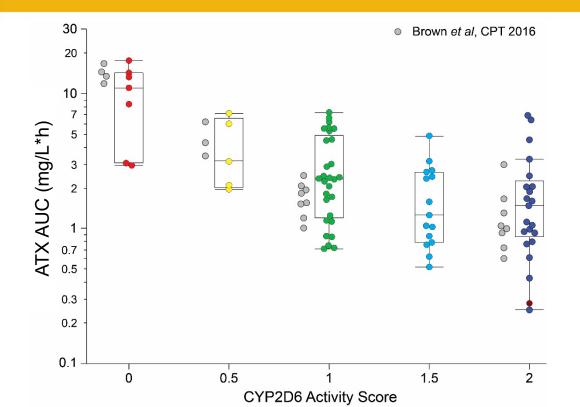
- Same pathways of clearance between adults and children (DMEs, transporters, etc.)
- Comprehensive data available for children about physiological, biochemical, and physiochemical processes (or good estimates).
- Drug does not impact trajectory of gene expression and/or protein content.


Valganciclovir: PopPK + PBPK

- Valganciclor (VGCV) is an oral prodrug of ganciclovir (GCV) → prevention and treatment of cytomegalovirus (CMV) infection.
- Goal: approval of dosing algorithm of children < 4 months old.
- Method: PopPK ("Top-Down") + PBPK ("Bottom-Up") = "Middle-out"
 - GCV PopPK → Covariates of importance to clearance were CrCl and ht (assoc with Vd).
 - PBPK adult VGCV model → esterase activity (conversion of VGCV → GCV); renal excretion of GCV; active transport processes (MRP4, OAT1, OCT1, MATE1, MATE2-K, PepT1)
 Jorga et al (2016)

12

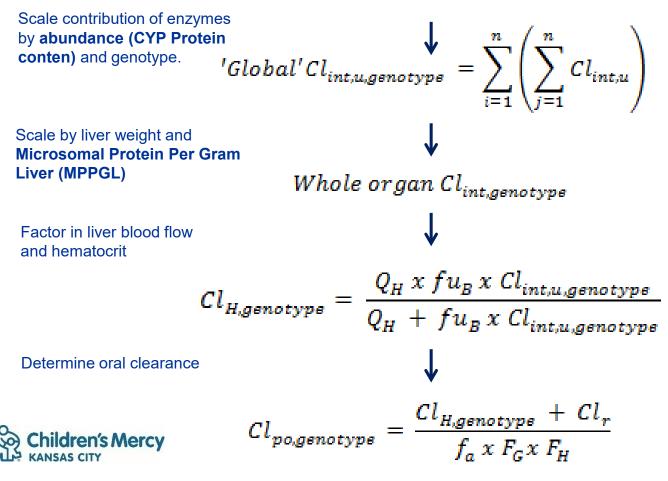
₽


VGCV–Dosing Algorithm Development

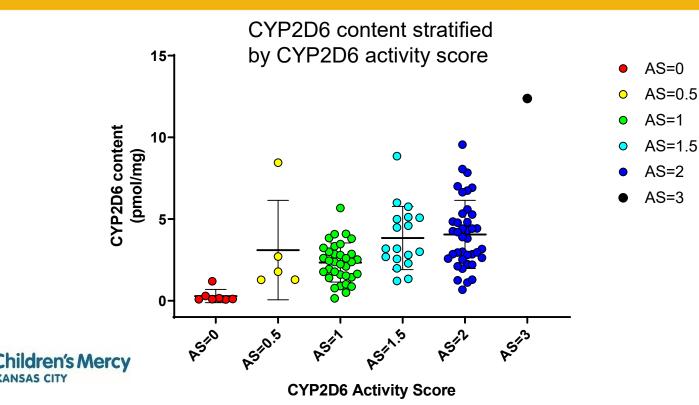
Jorga et al, (2016)

13

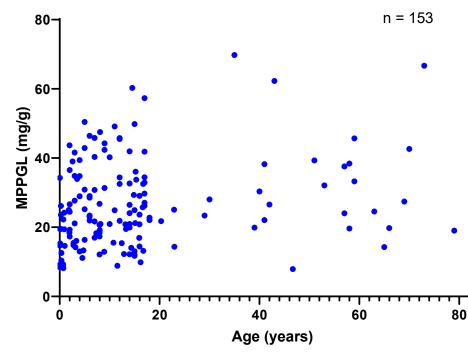
Virtual Child – Bottom-up PBPK



Atomoxetine Exposure Prediction

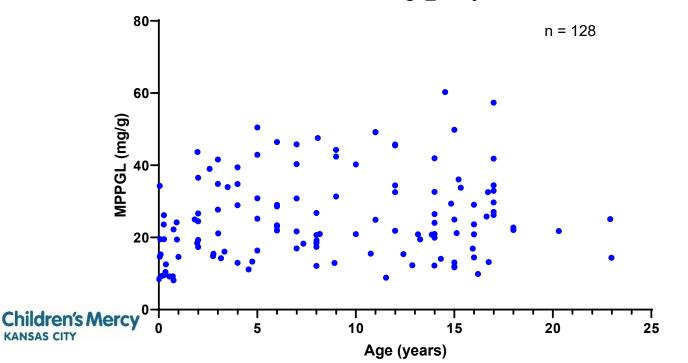

- Pediatric liver samples (n=78) genotyped for CYP2D6
- 0.5 mg/kg dose simulated
- In vivo within-genotype variability confirmed in vitro
- Activities of metabolic pathway determined by formation of 4OH-ATX, NDM and 2-OH pathways
- Inter-individual variability in competing pathways become important sources of variability in dose-exposure relationship for PMs and IMs

$$Cl_{int,u,ij} = 'Global'Cl_{int,u} \times f_{m,ij}$$



CYP2D6 Protein Content

MPPGL Ontogeny


MPPGL (mg/g) vs. Age

	Age	MPPGL
median	11.00	24.05
mean	15.93	26.56
min	0.00	7.93
max	79.00	69.77

MPPGL (0 – 25 yo)

MPPGLvAge_0-25yo

Conclusions

- PBPK can be useful tools to extrapolate PK parameters for special populations, particularly in young children.
- A "middle-out" PBPK methodology is a useful approach for anticipating drug pharmacokinetics in younger population.
- Pediatric-derived bottom-up PBPK models may be utilized to develop pediatric specific PBPK models.

